Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Sci Immunol ; 7(67): eabl9929, 2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-34812647

RESUMO

The development of a tractable small animal model faithfully reproducing human coronavirus disease 2019 pathogenesis would arguably meet a pressing need in biomedical research. Thus far, most investigators have used transgenic mice expressing the human ACE2 in epithelial cells (K18-hACE2 transgenic mice) that are intranasally instilled with a liquid severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) suspension under deep anesthesia. Unfortunately, this experimental approach results in disproportionate high central nervous system infection leading to fatal encephalitis, which is rarely observed in humans and severely limits this model's usefulness. Here, we describe the use of an inhalation tower system that allows exposure of unanesthetized mice to aerosolized virus under controlled conditions. Aerosol exposure of K18-hACE2 transgenic mice to SARS-CoV-2 resulted in robust viral replication in the respiratory tract, anosmia, and airway obstruction but did not lead to fatal viral neuroinvasion. When compared with intranasal inoculation, aerosol infection resulted in a more pronounced lung pathology including increased immune infiltration, fibrin deposition, and a transcriptional signature comparable to that observed in SARS-CoV-2­infected patients. This model may prove useful for studies of viral transmission, disease pathogenesis (including long-term consequences of SARS-CoV-2 infection), and therapeutic interventions.


Assuntos
Enzima de Conversão de Angiotensina 2/genética , COVID-19/fisiopatologia , Modelos Animais de Doenças , Encefalite Viral/prevenção & controle , Queratina-18/genética , Sprays Nasais , SARS-CoV-2/fisiologia , Administração por Inalação , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , COVID-19/imunologia , COVID-19/virologia , Encefalite Viral/mortalidade , Células Epiteliais/metabolismo , Feminino , Humanos , Queratina-18/metabolismo , Pulmão/imunologia , Pulmão/patologia , Pulmão/fisiopatologia , Masculino , Camundongos , Camundongos Transgênicos , Regiões Promotoras Genéticas/genética , Transcriptoma , Replicação Viral
3.
Immunity ; 54(9): 2089-2100.e8, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34469774

RESUMO

Kupffer cells (KCs) are highly abundant, intravascular, liver-resident macrophages known for their scavenger and phagocytic functions. KCs can also present antigens to CD8+ T cells and promote either tolerance or effector differentiation, but the mechanisms underlying these discrepant outcomes are poorly understood. Here, we used a mouse model of hepatitis B virus (HBV) infection, in which HBV-specific naive CD8+ T cells recognizing hepatocellular antigens are driven into a state of immune dysfunction, to identify a subset of KCs (referred to as KC2) that cross-presents hepatocellular antigens upon interleukin-2 (IL-2) administration, thus improving the antiviral function of T cells. Removing MHC-I from all KCs, including KC2, or selectively depleting KC2 impaired the capacity of IL-2 to revert the T cell dysfunction induced by intrahepatic priming. In summary, by sensing IL-2 and cross-presenting hepatocellular antigens, KC2 overcome the tolerogenic potential of the hepatic microenvironment, suggesting new strategies for boosting hepatic T cell immunity.


Assuntos
Apresentação de Antígeno/imunologia , Linfócitos T CD8-Positivos/imunologia , Apresentação Cruzada/imunologia , Interleucina-2/imunologia , Células de Kupffer/imunologia , Animais , Hepatite B/imunologia , Tolerância Imunológica/imunologia , Camundongos , Camundongos Transgênicos
4.
Int J Mol Sci ; 21(1)2019 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-31905747

RESUMO

RE-1 silencing transcription factor (REST) (known also as NRSF) is a well-known transcription repressor whose strong decrease induces the distinction of neurons with respect to the other cells. Such distinction depends on the marked increased/decreased expression of specific genes, accompanied by parallel changes of the corresponding proteins. Many properties of REST had been identified in the past. Here we report those identified during the last 5 years. Among physiological discoveries are hundreds of genes governed directly/indirectly by REST, the mechanisms of its neuron/fibroblast conversions, and the cooperations with numerous distinct factors induced at the epigenetic level and essential for REST specific functions. New effects induced in neurons during brain diseases depend on the localization of REST, in the nucleus, where functions and toxicity occur, and in the cytoplasm. The effects of REST, including cell aggression or protection, are variable in neurodegenerative diseases in view of the distinct mechanisms of their pathology. Moreover, cooperations are among the mechanisms that govern the severity of brain cancers, glioblastomas, and medulloblastomas. Interestingly, the role in cancers is relevant also for therapeutic perspectives affecting the REST cooperations. In conclusion, part of the new REST knowledge in physiology and pathology appears promising for future developments in research and brain diseases.


Assuntos
Encéfalo/metabolismo , Doenças Neurodegenerativas/metabolismo , Neurônios/metabolismo , Proteínas Repressoras/metabolismo , Animais , Encéfalo/patologia , Diferenciação Celular/genética , Epigênese Genética , Epilepsia/genética , Epilepsia/metabolismo , Epilepsia/terapia , Regulação da Expressão Gênica/genética , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Meduloblastoma/tratamento farmacológico , Meduloblastoma/genética , Meduloblastoma/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Doenças Neurodegenerativas/genética , Neurônios/fisiologia , Proteínas Repressoras/genética
5.
Histopathology ; 72(6): 1039-1050, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29356044

RESUMO

AIMS: High mobility group box 1 (HMGB1) is a chromatin structural protein, expressed ubiquitously in the nuclei of mammalian cells. When transported extracellularly, it acts as a tumour suppressor and oncogenic protein. In malignant pleural mesothelioma (MPM), high serum levels of HMGB1 have been related to a poor prognosis. Conversely, the significance of HMGB1 expression in MPM tissues is still unclear. METHODS AND RESULTS: Biopsy samples from 170 patients with MPM were assessed by immunohistochemistry and reverse transcription-polymerase chain reaction (RT-PCR) to evaluate HMGB1 protein and gene expression. The expression level of HMGB1 protein was scored using a semiquantitative system that sums the intensity (0-3) and the percentage (from 0 to 4) of positively stained cells in nuclei, cytoplasm and in both. The final score was considered as high (>3) or low (<3) expression. Gene expression levels were calculated using the ΔΔCt method. High expression levels of HMGB1 as total (P = 0.0011) and cytoplasmic score (P = 0.0462) were related to a worse disease-specific survival (DSS) in the entire cohort and in the clinicopathological subgroups. No significant correlation was found between HMGB1 gene expression and DSS. CONCLUSIONS: These findings indicate that HMGB1 may be a useful prognostic biomarker in MPM when detected by immunohistochemistry. Conversely, as it is also expressed in normal and reactive mesothelial cells, HMGB1 cannot be considered a diagnostic biomarker in histological samples of mesothelioma.


Assuntos
Biomarcadores Tumorais/análise , Proteína HMGB1/biossíntese , Neoplasias Pulmonares/patologia , Mesotelioma/patologia , Neoplasias Pleurais/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Intervalo Livre de Doença , Feminino , Proteína HMGB1/análise , Humanos , Estimativa de Kaplan-Meier , Neoplasias Pulmonares/mortalidade , Masculino , Mesotelioma/mortalidade , Mesotelioma Maligno , Pessoa de Meia-Idade , Neoplasias Pleurais/mortalidade , Prognóstico
6.
Sci Adv ; 3(12): e1701211, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29226242

RESUMO

Recent evidence indicates that hematopoietic stem and progenitor cells (HSPCs) can serve as vehicles for therapeutic molecular delivery to the brain by contributing to the turnover of resident myeloid cell populations. However, such engraftment needs to be fast and efficient to exert its therapeutic potential for diseases affecting the central nervous system. Moreover, the nature of the cells reconstituted after transplantation and whether they could comprise bona fide microglia remain to be assessed. We demonstrate that transplantation of HSPCs in the cerebral lateral ventricles provides rapid engraftment of morphologically, antigenically, and transcriptionally dependable microglia-like cells. We show that the cells comprised within the hematopoietic stem cell compartment and enriched early progenitor fractions generate this microglia-like population when injected in the brain ventricles in the absence of engraftment in the bone marrow. This delivery route has therapeutic relevance because it increases the delivery of therapeutic molecules to the brain, as shown in a humanized animal model of a prototypical lysosomal storage disease affecting the central nervous system.


Assuntos
Ventrículos Cerebrais/citologia , Transplante de Células-Tronco Hematopoéticas/métodos , Microglia/citologia , Animais , Antígenos CD34 , Modelos Animais de Doenças , Proteínas de Fluorescência Verde/administração & dosagem , Proteínas de Fluorescência Verde/genética , Células-Tronco Hematopoéticas/metabolismo , Humanos , Leucodistrofia Metacromática/etiologia , Leucodistrofia Metacromática/terapia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células Mieloides/citologia
7.
Front Cell Neurosci ; 9: 438, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26617488

RESUMO

The role of REST changes in neurons, including the rapid decrease of its level during differentiation and its fluctuations during many mature functions and diseases, is well established. However, identification of many thousand possible REST-target genes, mostly based on indirect criteria, and demonstration of their operative dependence on the repressor have been established for only a relatively small fraction. In the present study, starting from our recently published work, we have expanded the identification of REST-dependent genes, investigated in two clones of the PC12 line, a recognized neuronal cell model, spontaneously expressing different levels of REST: very low as in neurons and much higher as in most non-neural cells. The molecular, structural and functional differences of the two PC12 clones were shown to depend largely on their different REST level and the ensuing variable expression of some dependent genes. Comprehensive RNA-Seq analyses of the 13,700 genes expressed, validated by parallel RT-PCR and western analyses of mRNAs and encoded proteins, identified in the high-REST clone two groups of almost 900 repressed and up-regulated genes. Repression is often due to direct binding of REST to target genes; up-regulation to indirect mechanism(s) mostly mediated by REST repression of repressive transcription factors. Most, but not all, genes governing neurosecretion, excitability, and receptor channel signaling were repressed in the high REST clone. The genes governing expression of non-channel receptors (G protein-coupled and others), although variably affected, were often up-regulated together with the genes of intracellular kinases, small G proteins, cytoskeleton, cell adhesion, and extracellular matrix proteins. Expression of REST-dependent genes governing functions other than those mentioned so far were also identified. The results obtained by the parallel investigation of the two PC12 clones revealed the complexity of the REST molecular and functional role, deciphering new aspects of its participation in neuronal functions. The new findings could be relevant for further investigation and interpretation of physiological processes typical of neurons. Moreover, they could be employed as tools in the study of neuronal diseases recently shown to depend on REST for their development.

8.
Biomed Res Int ; 2015: 202914, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26413508

RESUMO

Cell epigenomics depends on the marks released by transcription factors operating via the assembly of complexes that induce focal changes of DNA and histone structure. Among these factors is REST, a repressor that, via its strong decrease, governs both neuronal and neural cell differentiation and specificity. REST operation on thousands of possible genes can occur directly or via indirect mechanisms including repression of other factors. In previous studies of gene down- and upregulation, processes had been only partially investigated in neural cells. PC12 are well-known neural cells sharing properties with neurons. In the widely used PC12 populations, low-REST cells coexist with few, spontaneous high-REST PC12 cells. High- and low-REST PC12 clones were employed to investigate the role and the mechanisms of the repressor action. Among 15,500 expressed genes we identified 1,770 target and nontarget, REST-dependent genes. Functionally, these genes were found to operate in many pathways, from synaptic function to extracellular matrix. Mechanistically, downregulated genes were predominantly repressed directly by REST; upregulated genes were mostly governed indirectly. Among other factors, Polycomb complexes cooperated with REST for downregulation, and Smad3 and Myod1 participated in upregulation. In conclusion, we have highlighted that PC12 clones are a useful model to investigate REST, opening opportunities to development of epigenomic investigation.


Assuntos
Expressão Gênica/genética , Modelos Genéticos , Neurônios/metabolismo , Proteínas Repressoras/genética , Animais , Regulação para Baixo/genética , Epigenômica , Redes Reguladoras de Genes , Neurônios/citologia , Células PC12 , Ratos , Proteínas Repressoras/metabolismo , Regulação para Cima/genética
9.
Nucleic Acids Res ; 43(W1): W589-98, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25897122

RESUMO

The BioMart Community Portal (www.biomart.org) is a community-driven effort to provide a unified interface to biomedical databases that are distributed worldwide. The portal provides access to numerous database projects supported by 30 scientific organizations. It includes over 800 different biological datasets spanning genomics, proteomics, model organisms, cancer data, ontology information and more. All resources available through the portal are independently administered and funded by their host organizations. The BioMart data federation technology provides a unified interface to all the available data. The latest version of the portal comes with many new databases that have been created by our ever-growing community. It also comes with better support and extensibility for data analysis and visualization tools. A new addition to our toolbox, the enrichment analysis tool is now accessible through graphical and web service interface. The BioMart community portal averages over one million requests per day. Building on this level of service and the wealth of information that has become available, the BioMart Community Portal has introduced a new, more scalable and cheaper alternative to the large data stores maintained by specialized organizations.


Assuntos
Sistemas de Gerenciamento de Base de Dados , Genômica , Humanos , Internet , Neoplasias/genética , Proteômica
10.
PLoS One ; 9(4): e93983, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24722564

RESUMO

Myotonic dystrophy type 2 (DM2) is a genetic, autosomal dominant disease due to expansion of tetraplet (CCTG) repetitions in the first intron of the ZNF9/CNBP gene. DM2 is a multisystemic disorder affecting the skeletal muscle, the heart, the eye and the endocrine system. According to the proposed pathological mechanism, the expanded tetraplets have an RNA toxic effect, disrupting the splicing of many mRNAs. Thus, the identification of aberrantly spliced transcripts is instrumental for our understanding of the molecular mechanisms underpinning the disease. The aim of this study was the identification of new aberrant alternative splicing events in DM2 patients. By genome wide analysis of 10 DM2 patients and 10 controls (CTR), we identified 273 alternative spliced exons in 218 genes. While many aberrant splicing events were already identified in the past, most were new. A subset of these events was validated by qPCR assays in 19 DM2 and 15 CTR subjects. To gain insight into the molecular pathways involving the identified aberrantly spliced genes, we performed a bioinformatics analysis with Ingenuity system. This analysis indicated a deregulation of development, cell survival, metabolism, calcium signaling and contractility. In conclusion, our genome wide analysis provided a database of aberrant splicing events in the skeletal muscle of DM2 patients. The affected genes are involved in numerous pathways and networks important for muscle physio-pathology, suggesting that the identified variants may contribute to DM2 pathogenesis.


Assuntos
Processamento Alternativo , Genoma Humano , Distrofia Miotônica/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Biópsia , Sinalização do Cálcio , Sobrevivência Celular , Biologia Computacional , Éxons , Feminino , Proteínas Fetais/genética , Forminas , Regulação da Expressão Gênica , Humanos , Proteínas com Domínio LIM/genética , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/metabolismo , Fatores de Transcrição NFI/genética , Proteínas Nucleares/genética , Reação em Cadeia da Polimerase , RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas tau/genética
11.
Antioxid Redox Signal ; 19(13): 1447-51, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-23541115

RESUMO

Abstract H2O2 produced by extracellular NADPH oxidases regulates tyrosine kinase signaling inhibiting phosphatases. How does it cross the membrane to reach its cytosolic targets? Silencing aquaporin-8 (AQP8), but not AQP3 or AQP4, inhibited H2O2 entry into HeLa cells. Re-expression of AQP8 with silencing-resistant vectors rescued H2O2 transport, whereas a C173A-AQP8 mutant failed to do so. Lowering AQP8 levels affected H2O2 entry into the endoplasmic reticulum, but not into mitochondria. AQP8 silencing also inhibited the H2O2 spikes and phosphorylation of downstream proteins induced by epidermal growth factor. These observations lead to the hypothesis that H2O2 does not freely diffuse across the plasma membrane and AQP8 and other H2O2 transporters are potential targets for manipulating key signaling pathways in cancer and degenerative diseases.


Assuntos
Permeabilidade da Membrana Celular , Peróxido de Hidrogênio/metabolismo , Proteínas Tirosina Quinases/metabolismo , Transdução de Sinais , Aquaporinas/genética , Aquaporinas/metabolismo , Permeabilidade da Membrana Celular/genética , Células Cultivadas , Fator de Crescimento Epidérmico/metabolismo , Inativação Gênica , Células HeLa , Humanos , Mutação , Fosforilação , Proteínas Tirosina Quinases/antagonistas & inibidores , Transdução de Sinais/genética
12.
Antioxid Redox Signal ; 13(8): 1133-44, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20486764

RESUMO

Limited amounts of reactive oxygen species are necessary for cell survival and signaling, but their excess causes oxidative stress. H(2)O(2) and other reactive oxygen species are formed as byproducts of several metabolic pathways, possibly including oxidative protein folding in the endoplasmic reticulum. B- to plasma-cell differentiation is characterized by a massive expansion of the endoplasmic reticulum, finalized to sustain abundant immunoglobulin (Ig) synthesis and secretion. The increased production of disulfide-rich Ig might cause oxidative stress that could serve signaling roles in the differentiation and lifespan control of antibody-secreting cells. Here we show that terminal B-cell differentiation entails redox stress, NF-E2-related factor-2 (Nrf2) activation, and reshaping of the antioxidant responses. However, plasma-cell differentiation was not dramatically impaired in peroxiredoxin (Prx)1-, 2-, 3-, and 4-, glutathione peroxidase 1-, and Nrf2-knockout splenocytes, suggesting redundancy and robustness in antioxidant systems. Endoplasmic reticulum (ER)-resident Prx4 increases dramatically during differentiation. In its absence, IgM secretion was not significantly affected, but more high-molecular-weight covalent complexes accumulated intracellularly. Our results suggest that the early intracellular production of H(2)O(2) facilitates B-cell proliferation and reveal a role for the Nrf2 pathway in the differentiation and function of IgM-secreting cells.


Assuntos
Antioxidantes/metabolismo , Linfócitos B/citologia , Diferenciação Celular , Estresse Oxidativo , Plasmócitos/citologia , Animais , Linfócitos B/efeitos dos fármacos , Linfócitos B/imunologia , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células , Células Cultivadas , Retículo Endoplasmático , Imunoglobulina M/imunologia , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 2 Relacionado a NF-E2/deficiência , Fator 2 Relacionado a NF-E2/imunologia , Oxirredução , Plasmócitos/efeitos dos fármacos , Plasmócitos/imunologia , Espécies Reativas de Oxigênio/imunologia , Transdução de Sinais
13.
Int J Biochem Cell Biol ; 41(3): 687-93, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18762272

RESUMO

Endothelial migration, early step in angiogenesis, is tightly regulated by the coordinated action of tyrosine kinases and tyrosine phosphatases. HD-PTP contributes to endothelial motility, since endothelial cells silencing HD-PTP after transfection with iRNA acquire a scattered and spindle-shaped phenotype and migrate faster than controls. Since (i) the proto-oncogene Src contributes to the regulation of cell motility and (ii) HD-PTP has a potential binding site for Src, we investigated whether an interplay exists between these two proteins. We found that Src binds HD-PTP and this interaction is enhanced after exposure to basic fibroblast growth factor. While HD-PTP does not modulate the levels of Src phosphorylation both in vitro and in vivo, we found that Src phosphorylates HD-PTP on tyrosine residues. Here we show for the first time that (i) HD-PTP has a tyrosine phosphatase activity; (ii) HD-PTP phosphorylation by Src inhibits its enzymatic activity. Interestingly, pharmacological and genetic inhibition of Src abrogates the migratory phenotype of endothelial cells silencing HD-PTP. On these bases, and because we have previously demonstrated that HD-PTP binds and dephosphorylates focal adhesion kinase (FAK), another crucial regulator of cell migration, we hypothesize that HD-PTP participates to the regulation of endothelial motility through its interactions with Src and FAK.


Assuntos
Movimento Celular/genética , Células Endoteliais/metabolismo , Proteínas Tirosina Fosfatases não Receptoras/metabolismo , Quinases da Família src/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ciclo Celular/metabolismo , Movimento Celular/efeitos dos fármacos , Proliferação de Células , Células Clonais , Citoplasma/metabolismo , Regulação para Baixo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Células Endoteliais/citologia , Fatores de Crescimento de Fibroblastos/metabolismo , Quinase 1 de Adesão Focal/metabolismo , Adesões Focais/enzimologia , Humanos , Fosforilação/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/genética , Domínios e Motivos de Interação entre Proteínas , Proteínas Tirosina Fosfatases não Receptoras/genética , Proto-Oncogene Mas , Pirimidinas/farmacologia , RNA Interferente Pequeno/genética , Quinases da Família src/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...